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Effect of near-critical swirl on the Burke-Schumann reaction sheet
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Abstract. The influence of swirl on the shape of the Burke-Schumann reaction sheet in a straight cylindrical pipe
is investigated by asymptotic and numerical means. Attention is confined to swirl levels that are near the crit-
ical value at which vortex breakdown occurs. A high-Reynolds-number, laminar, isothermal, low-Mach-number
reacting flow is considered. An asymptotic analysis is developed to study the nonlinear interaction between near-
critical swirl and mixture fraction distribution within the flow. It is first shown that leading-order perturbation
of the velocity field from the columnar state, generated by the interaction of near-critical swirl and low viscosity,
can be described by a nonlinear reduced-order model. This flow perturbation is computed, and then employed to
determine the correction to the classical Burke-Schumann solution. Under lean conditions of reaction the reac-
tion sheet becomes shorter and more compact as swirl is increased. For rich conditions of reaction, increasing
swirl first causes the reaction-sheet length to decrease, and then increase after vortex breakdown has appeared.
Numerical simulations of the flow and reaction-zone shape are substantiated by, and supplement, the asymptotic
results.
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1. Introduction

The study of diffusive (non-premixed) combustion, which is deemed to be safer and more eco-
nomical than premixed combustion, has a long history. The classical solution of Burke and
Schumann [1] describes the steady structure, in terms of mixture fraction distribution, of the
flame sheet that is produced when two co-axial jets of fuel and oxidizer are injected into a
straight cylindrical pipe; see also Williams [2, Section 3.1]. The original Burke-Schumann for-
mulation focused on the balance between streamwise convection and transverse diffusion of
species by considering the species conservation equation alone. Constant axial velocity and infi-
nite rate of reaction were assumed and effects of heat release due to chemical reaction, transverse
convection resulting from thermal expansion effects, axial diffusion of species, and viscous dis-
sipation were neglected. Despite these deviations from realism, the Burke-Schumann solution
captured rather well the fundamental character of the diffusion flame, to the extent that it has
served as the canonical model for illustrating the structure of diffusional combustion.

By adding energy conservation to species balance, Williams [2, Section 3.4], extended the
Burke-Schumann approach to compute the steady-state fields of mixture fraction as well as
temperature, for unit Lewis number (Le). Momentum equations were not considered in the
analysis; in fact, these equations cannot be satisfied by the solutions of the mass fraction and
energy equations. Roper [3] modified the Burke-Schumann theory to satisfy the continuity equa-
tion when velocity and temperature fields are not constant. Again, momentum equations were
not considered. Roper predicted a small effect of the modifications on the flame size for a cir-
cular port burner. The experiments of Roper et al. [4] showed agreement with the flame length
predicted by Roper’s theory [3]. Klajan and Oppenhiem [5] developed an analytical approach to
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describe the effect of exothermicity on the shape of jet diffusion flames and associated temper-
ature and flow fields. They constructed self-similar solutions using the Dorodnitsyn-Howarth
transformation of the compressible flow equations and found agreement of the flame length
with experimental data under zero gravity conditions. Chung and Law [6] revised the Burke-
Schumann formulation to include effects of streamwise as well as preferential diffusion of spe-
cies and heat for flows with non-unity Lewis number. They used a perturbation analysis for
flames at near-unity Le and described Lewis-number effects on flame shape and temperature
at various Peclet numbers (Pe). Li, Gordon, and Williams [7] analyzed highly over-ventilated
flames in an infinite atmosphere at Le = 1. They used the reaction sheet approximation and
included buoyancy. A boundary-layer approximation in the stream-function coordinates was
used to simplify numerical integration of the flow and species equations. The radial momentum
equation was not considered. Computed results of the flame-length dependence on fuel flow
rate for various hydrocarbon fuels showed agreement with experimental data.

Although in broad use, diffusional combustion is prone to instabilities, flame lift-off, and
extinction [2, Section 10.2]. In recent years it has been found that exerting swirl on diffusion
flames may help eliminate blowout, reduce flame lift-off distance, improve flame stability, and
enhance combustion performance (see, for example, the experimental results in [8, Chapters
3 and 4], [9], [10, Chapter 13], [11], [12]). Typically, flows with combustion and high levels
of swirl exhibit complex patterns, including large-scale internal separation (vortex breakdown)
zones that create transverse convection, which in turn significantly affects flame length and
shape. Analysis of this situation is challenging, and to the best of our knowledge there is no
mathematical investigation of diffusive combustion with swirl. Current studies concentrate on
extensive numerical simulations (see, for example, [13–16]).

This effort is a first step toward developing a better understanding of the effects of swirl
on diffusion flames. It combines asymptotic analysis and numerical computation, and focuses
on the influence of near-critical swirl and the first appearance of vortex breakdown on the
Burke-Schumann flame structure. The flow is laminar and the Reynolds number is high, and
the heat released by the chemical reaction is ignored. The last assumption is drastic in a
combustion context, as it yields an isothermal reaction zone rather than a flame. However,
it is made here by design, to isolate effects of swirl from those of thermal expansion. The
approach can be extended to include effects of small exothermicity, as demonstrated in the
context of premixed combustion by Rusak et al. [17]. Application to nonpremixed combus-
tion, examined in Sohn’s thesis [18], will be the subject of a forthcoming publication. Heat
release of order unity, on the other hand, may well require a fully numerical treatment.

The asymptotic approach adopted here is based on Wang and Rusak’s [19] treatment of
cold, inert flows. These authors provide an asymptotic description of the flow disturbance
generated by the interaction between swirl and viscosity. They show that large disturbances
appear in the flow as the swirl level approaches a critical value ωc, signifying the first occur-
rence of vortex breakdown. Their results agree well with numerically obtained Navier-Stokes
solutions of Beran and Culick [20], Beran [21], and Lopez [22]. We employ Wang and Rusak’s
[19] asymptotic description of the flow to determine the effect of the flow on the shape of
the reaction zone. The asymptotic predictions are numerically substantiated through extensive
simulations of the flow field and the flame shape.

2. The mathematical model

We consider a pipe in the form of a right-circular cylinder with a finite length. Nonpre-
mixed reactants, supplied as an inner stream of fuel surrounded by a coaxial outer stream
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of oxidant, pass through a swirl generator placed upstream of the inlet prior to entering the
chamber.

The mathematical formulation is based on several assumptions about the nature of the
flow and the process of reaction. We consider the limit of zero heat release and low Mach
number. Then, energy balance implies that the flow is isothermal, while the gas law leads to
constant density. Following Burke-Schumann, we also consider infinitely fast chemistry so that
the reaction is confined to a thin sheet. Transport coefficients such as thermal conductivity,
viscosity and species diffusion coefficients are assumed constant. Then the non-dimensional
equations of mass, momentum, energy and species balance for a steady, axi-symmetric, incom-
pressible and viscous flow of a reactive fluid are:
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The above nondimensionalization is based on the following reference quantities. The axial
length scales with the pipe length �̂0 and the radial length with the pipe radius r̂0, with x0 =
�̂0/r̂0 being the length-to-radius ratio. The axial and circumferential speeds are scaled with
the inlet axial speed Û0 and the radial speed with Û0/x0. The speeds u, v and w are, respec-
tively, the non-dimensional radial, circumferential, and axial components of the velocity, YF
and YO denote the fuel and oxygen mass fractions respectively, and f is the mixture mass
fraction, derived for example in [23, Chapter 1]. Also, WF and WO are the respective molec-
ular weights of fuel and oxygen, ν′

i is the stoichiometric coefficient for species i appearing
as a reactant and ν′

i that for species i appearing as a product, while ν is the stoichiometric
oxygen-to-fuel mass ratio. The dimensionless parameters appearing above are the Reynolds
number Re= ρ̂0Û0r̂0/µ̂, and the Peclet number Pe= ρ̂0Û0r̂0/D̂. Here p̂0 and ρ̂0 are the refer-
ence values of pressure and density respectively, µ̂ is the viscosity, and D̂ the mass diffusion
coefficient for both fuel and oxidant (corresponding to a Lewis number of unity). The dimen-
sionless pressure p appearing in the above equations is the pressure excess above the ambient

value p̂0 = ρ̂0RT̂0 in units of γM2
0 p̂0, i.e., p̂= p̂0(1+γM2

0p). Here M0 =
√
Û2

0 /(γ p̂0/ρ̂0) is the

Mach number, γ the specific heats ratio, and T̂0 the reference (ambient) temperature.
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We consider a sufficiently long, straight pipe and a large Reynolds number such that the
following asymptotic ordering applies:

x0 �1, Re�1, and 0<
x0

Re
�1.

Equations (1–5) show that the solution for the flow velocity is decoupled from the solution
for the mixture fraction f . Specifically, the solution for f is determined after the solution for
the velocity field has been found.

The flow is subject to the following boundary conditions. At the pipe inlet x=0, axial and
circumferential speeds and axial gradient of the radial speed are prescribed as

w(0, r)=w0(r), v(0, r)=ωv0(r), ux(0, r)=0, for 0≤ r≤1. (8)

The above condition on ux is equivalent to prescribing the azimuthal vorticity as η(0, r)=
w′

0(r), and provides the freedom necessary for the development of a radial velocity profile at
the inlet to reflect the upstream influence of disturbances that have a tendency to cast such
an influence. Here ω is the swirl ratio, representing the strength of the vortex flow. These inlet
conditions are sufficiently general to model a swirling flow produced by a vortex generator
located immediately upstream of the inlet and operating in a steady and continuous manner.
These conditions also correspond to the cold and incompressible vortex flow experiments of
Bruecker and Althaus [26], Malkiel et al. [27] and Mattner et al. [28]. In addition to (8) we
assume that the inlet flow is a two-gas (fuel and oxidant) stream, with the two constituents
separated at an inner radius 0<Ri <1. The mixture mass fraction in each region is given by

Fuel:f (0, r)=1 for 0≤ r <Ri; Oxidant:f (0, r)=0 for Ri <r≤1. (9)

At the pipe outlet x=1 it is assumed that the radial speed, the streamwise derivatives of the
axial and circumferential speeds and the mixture mass fraction vanish, i.e.,

u(1, r)=vx(1, r)=wx(1, r)=0, fx(1, r)= e.s.t for 0≤ r≤1. (10)

Here e.s.t. denotes an exponentially small term, in accordance with the Burke-Schumann solu-
tion and the expected columnar state at the outlet for x0 �1.

The pipe axis of symmetry is a streamline along which the radial and azimuthal velocity
components vanish, as do the radial gradients of the axial velocity and mixture fraction. Con-
sequently, we set

u(x,0)=v(x,0)=wr(x,0)=fr(x,0)=0 for 0≤x≤1. (11)

Only the impermeability, but not the no-slip, condition is enforced along the wall r=1. This
condition ignores the influence of wall boundary layers, with the expectation that these layers
exert at most a quantitative effect on the phenomenon under study; see for example, the rele-
vant discussion in [20] and [22]. Also, along the pipe wall, the radial gradient of the mixture
mass fraction vanishes. Thus we have

u(x,1)=fr(x,1)=0 for 0≤x≤1. (12)

By virtue of axisymmetry (i.e., the absence of azimuthal derivatives in the governing equa-
tions and boundary conditions) and the continuity equation (1), a stream function ψ can be
defined where the radial component of velocity u=−ψx/r and the axial component w=ψr/r.
Let a new radial coordinate y be defined by y= r2/2. Then, u=−ψ(x, y)x/

√
2y,w=ψy(x, y),
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and the azimuthal vorticity η= rχ where χ ≡−{ψyy +ψxx/(2x2
0y)}. Along the inlet we have

ψ0(y)≡ψ(0, y), with ψ0y =w0(y) and χ0(y)≡χ(0, y)=−w0y . It is also convenient to define
the circulation K(x, y) by K≡ rv. Then, at the inlet, K0(y)≡K(0, y)=ωrv0(r). The following
equations can now be derived from the set (1–5):
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Note that pressure is eliminated from the problem by cross-differentiation of (2) and (4) and
by the introduction of χ . The boundary conditions (8–12) transform into

ψ(x,0)=0, ψ(x,1/2)=ψ0(1/2),
√
yfy(x,0)=fy(x,1/2)=0 for 0≤x≤1,

ψ(0, y)=ψ0(y), ψxx(0, y)=0, K(0, y)=K0(y) for 0≤y≤1/2,

f (0, y)=1 for 0≤y <yi, (16)

f (0, y)=0 for yi ≤y <1,

ψx(1, y)=χx(1, y)=Kx(1, y)=0, fx(1, y)= e.s.t. for 0≤y≤1/2.

3. The asymptotic solution

In the absence of viscosity the base flow is columnar, i.e., u= 0, w=w0(y) and K=ωK0(y),
while the mixture fraction distribution is given by the Burke-Schumann solution f =fBS(x, y),
defined below in (31). In this reference state there is no interaction between swirl and reac-
tion. For small swirl levels, departures from the columnar state induced by viscosity are cor-
respondingly small, and as a result, so is the perturbation to the reaction-sheet location.
However, as the swirl level increases towards the critical level for breakdown, ωc, changes in
the flow become more pronounced and correspondingly larger perturbations in the reaction-
sheet location, resulting from a nonlinear interaction, are anticipated. The following asymp-
totic analysis, based on the distinguished limit 	ω ≡ ω − ωc = O(√x0/Re) derived in [19],
estimates these changes. We postulate the asymptotic expansions

ψ(x, y)=ψ0(y)+ ε1ψ1(x, y)+ ε2ψ2(x, y)+· · · ,
K(x, y)=K0(y)+ ε1K1(x, y)+ ε2K2(x, y)+· · · , (17)

χ(x, y)=χ0(y)+ ε1χ1(x, y)+ ε2χ2(x, y)+· · · ,
f (x, y)=fBS(x, y)+ ε1f1(x, y)+· · · ,

where ε1 =O(	ω) and ε2 =O(ε2
1). Following the analysis of Wang and Rusak [19] one finds

the leading-order corrections to the flow to be

ψ1(x, y)≡ψ1c (x, y)=�(y) sin(πx/2),

K1(x, y)=
K0y

ψ0y
ψ1(x, y), (18)
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The quantities � and c≡ω2
c are found from the solution of the eigenvalue problem
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c
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8x2
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)
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where K̃0 ≡K0/ω.
The size of ε1 is determined from the analysis of the second-order terms. Again, details

are similar to those in [19] and we obtain the result
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Equation (21) determines ε1 as a function of the parameters 	 and x0/Re. It has a real
solution if and only if the following inequality between these parameters holds.
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When this condition is violated, Equation (21) has no solution, indicating that no steady and
near-columnar viscous solution exists close to the critical state. When the condition does hold,
we obtain the solutions
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When (24) holds as an equality, we obtain the fold points, or limit points, of the bifurcation as
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With ε1 determined, the expansions for the stream function ψ and the axial speed w, correct
to first order, can be written as
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With swirl-induced correction to the flow determined, we now turn attention to the expan-
sion for f in the set (17). The leading term of the expansion is the Burke-Schumann term,
which satisfies the leading-order version of the species equation (5),

w0
∂fBS

∂x
= x0

Pe
∂

∂y

(
2y
∂fBS

∂y

)
, (30)

in which axial diffusion does not come into play. The relevant boundary conditions, provided
by (16), are

fBS(0, y)=
{

1 : 0≤y <yi,
0 : yi <y≤1/2,

fBSx (1, y)= e.s.t. for 0≤y≤1/2,

fBSy (x,0)=fBSy (x,1/2)=0 for 0≤x≤1.

The solution of (28), for w0 =1 and subject to the above boundary conditions, is
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where Jk is the Bessel function of the first kind of order k,µn (n= 1,2, . . . ) are the roots of
J1(µn)=0, and
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The leading-order correction f1 is found to satisfy the nonhomogeneous equation
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where Q(x, y) is a known function, dependent upon the Burke-Schumann solution fBS and
the flow correction ψ1, and given by
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The relevant boundary conditions, obtained from (16), are the homogeneous conditions

f1(0, y)=0 for 0≤y≤1/2,

f1x (1, y)= e.s.t. for 0≤y≤1/2, (35)

f1y (x,0)=f1y (x,1/2)=0 for 0≤x≤1.

The solution to the problem for f1 can be obtained in a straightforward fashion as a series
expansion in terms of the eigenfunctions φn(y)≡ J0(µn

√
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The result is
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Here,
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With f determined to O(ε1), we can now compute the corrected location of the reaction
sheet. It is found from the expression f =fst, where fst is the stoichiometric value of the mix-
ture fraction, given by

fst = YO,0

νYF,0 +YO,0
. (45)

This completes the asymptotic analysis.

4. The numerical solution

To obtain a numerical solution of the governing equations (1–5), subject to the boundary con-
ditions (8–12), a finite-volume method, embodied in the so-called SIMPLER algorithm (see
[16] and [29, Sections 6.7 and 6.8] for details) was adopted. We demonstrate the results for
the case where the inlet flow is described by the Burgers vortex model,

w0 =1, v0 = 1− e−βy√
2y

.

Here β is a constant related to the vortex core radius, rc=1·112/
√
β. This model is typically

used in numerical studies of vortex stability and breakdown of cold flows ([20]–[24]). In the
examples presented here we use β= 4 as a representative case. We first describe solutions of
viscous flow in the pipe at various values of x0/Re, and then the shape of the reaction zone.

To determine the sensitivity of the numerical calculations to axial and radial node spac-
ing, solutions at Re=4000 with x0 =15 and various levels of the inlet swirl ω were computed
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for two mesh sizes, starting with a basic grid of 550 × 60 in the axial and radial directions,
respectively. Beran and Culick [20] report that the structure and behavior of the breakdown
bubble is sensitive to the choice of inflow conditions for the azimuthal vorticity. Therefore,
in the present computations, a smaller axial step size was used near the pipe inlet than in
the downstream region to increase the computational accuracy of the solution near the inlet.
Results for the basic mesh were compared with those for the finer mesh, 750×90.

In keeping with earlier studies ([19], [20]), we use the minimum axial velocity along the
pipe axis as a representative measure of the flow state. This quantity represents the largest dis-
turbance in the flow field and when it becomes negative, a vortex breakdown state appears.
Figure 1 is a bifurcation diagram that presents the minimum of w(x,0) as a function of ω
for two different meshes. It is seen that mesh refinement produces very close results for val-
ues of swirl up to ω=0·81, and the steady solutions are converged. For flows with ω>0·81,
in which large-scale vortex zones appear, the finer mesh is needed to capture the breakdown
states. Even at this resolution, Figure 1 shows that the computed w(x,0) does not exhibit full
convergence in regions near or within the breakdown zone. Specifically, as the iterations pro-
ceed, the solutions exhibit small-amplitude oscillations near the breakdown point. Therefore,
most of the computations presented below correspond to flows with swirl levels just below
the first appearance of vortex breakdown. Also shown in Figure 1 are results from Beran and
Culick [20] for a similar inlet flow in a straight pipe. It can be seen that our computed results
agree closely with those in [20] for ω>0·78. At ω=0·78 the first fold occurs in the results of
Beran and Culick, followed by a second fold at the secondary limit point ω=0·725 at which a
branch of breakdown states emerges for ω>0·725. It should be noted that Beran and Culick
do not reports any results on this branch for ω> 0·73. These results are in accord with the
theory of Wang and Rusak [19], [25], who predict the existence of a two-fold behavior and
the appearance of breakdown states when ω>0·73 for β=4.

In our computations a hint of the first fold appears at ω= 0·81 and breakdown states
appear beyond. We clarify that our computational technique, not designed for solution con-
tinuation beyond the first fold, is unable to capture solutions along the fold, and the break-
down states in the range 0·725<ω<0·82. The comparison with the work of Beran and Culick
leads us to conclude that while the present numerical technique accurately computes the flow
states up to the first fold point, it loses some accuracy when breakdown zones appear, and
although it captures similar qualitative behavior, it cannot access the additional solutions in
the range of swirl ratios between the two fold points.
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Figure 1. Minimum of axial speed along pipe centerline as function of swirl ratio, for Re =4000 and x0 =15.
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4.1. Computed examples

Figure 2 shows the values of the minimum axial speed along the pipe centerline and the max-
imum axial speed along the pipe wall (note that the pipe wall satisfies only a slip boundary
condition) as function of the incoming swirl ratio ω for the two cases Re = 2000 and x0 = 5
(x0/Re = 1/400) and Re = 4000 and x0 = 5 (x0/Re = 1/800). These computations use the finer
mesh mentioned above. Note that for relatively shorter pipes, the axial diffusion terms in the
momentum equations have more influence than in much longer pipes. The asymptotic results
describe the nonuniqueness of solutions and a fold behavior over certain ranges of the swirl
ratio at near-critical swirl levels. This is in agreement with the numerical simulations of Ber-
an and Culick [20]. Our numerical results present a unique solution for each value of ω but
exhibit very rapid changes in structure at near-critical swirl ratios as well as at the appear-
ance of vortex breakdown, similar to what was found in Figure 1. It can be seen that the
upper branch of the asymptotic results (with the + sign in Equation (29)) shows agreement
with results of the numerical simulations, specifically as the ratio x0/Re is decreased. Also, the
asymptotic value of the limit swirl ratio where the fold occurs, ωc1, is close to the numerical
value of the swirl ratio where vortex breakdown appears for the first time as ω is increased.

Figures 3(a–d) present the axial velocity distributions along the pipe centerline and wall
for x0/Re = 1/800 and for several near-critical swirl ratios. As the swirl ratio is increased
towards the critical, flow perturbations from the columnar solution increase. It can be seen
that over a range of swirl levels not very close to the fold point the asymptotic solutions
given by (29) show a good correlation with the numerical results all along the pipe axis. For
higher levels of swirl the flow exhibits large perturbations and vortex breakdown, and then,
the asymptotic approach is not valid.

We now present results for the numerically computed reaction zones. Note that in this
diffusive-reactive system, most of the reaction occurs in a narrow zone that is approximated as
a surface. The reaction-sheet model assumes that the chemical-reaction time is much shorter
than the diffusion time of species and that the reaction only occurs on the interface between
fuel and air. Therefore, the reaction sheet can be identified as the surface along which the
mixture mass fraction has a stoichiometric value. We consider two reaction states with swirl
in the examples below. In the first case the ratio of fuel-to-air radii at inlet is Ri =1/6. Then,
the inlet mixture mass fraction has a value less than stoichiometric and the mixture is lean.
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Figure 3. The axial velocity along the pipe centerline (asymptotic results , numerical results ♦) and wall
(asymptotic results −−− and numerical results ◦) for x0/Re=1/800 (Re=4000, x0 =5) at (a) ω=0·60, (b) ω=0·70,
(c) ω=0·75, (d) ω=0·78.

This condition results in an over-ventilated reaction sheet that closes at the pipe axis. The sec-
ond case considers a rich mixture, where we take Ri=1/4. This condition results in an under-
ventilated reaction sheet which connects to the pipe wall. We consider these reaction states for
a variety of values of Pe.

Figures 4 and 5 display the length of the reaction zone as a function of swirl ratio ω for
both over-ventilated and under-ventilated cases and for various values of Pe. These figures
show a comparison of asymptotic results from Equations (17), (31) and (36) with numerical
results, for x0/Re = 1/400 and x0/Re = 1/800. The agreement is good for swirl ratios up to
the limiting level ωc1 defined in (26). It can be seen that the flame length is slightly reduced
as the swirl ratio is increased towards the limit level for both the over- and under-ventilated
cases. The numerical solutions display further changes in the length of the reaction zone as
vortex-breakdown states appear.

Figure 4. Comparison of asymptotic results (−) and numerical simulations (♦) for length of reaction zone, at
x0/Re=1/400 (Re=4000, x0 =10): (a) over-ventilated (b) under-ventilated.
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Figure 5. Comparison of asymptotic results (−) and numerical simulations (♦) for length of reaction zone, at
x0/Re=1/800 (Re=4000, x0 =5): (a) over-ventilated (b) under-ventilated.

Figure 6. Scaled reaction-zone length h/Pe against swirl ratio ω according to asymptotic results (−) and numerical
calculations (♦) for: (a) x0/Re=1/400 (Re=4000, x0 =10), (b) x0/Re=1/800 (Re=4000, x0 =5).

Figure 6 shows the scaled reaction-zone length h/Pe as a function of the swirl ratio for
both over- and under-ventilated cases. This parameter comes from the exponential term of the
Burke-Schumann solution, Equation (31). Results are again presented for x0/Re=1/400 and
x0/Re= 1/800. It is seen that when Pe is sufficiently high, the value of the scaled reaction-
zone length is nearly constant for swirl ratios up to the limit swirl level: h/Pe∼0·125 for the
over-ventilated case (with Ri = 1/6) and h/Pe ∼ 0·21 for the under-ventilated case (with Ri =
1/4). These values change as the incoming swirl ratio is further increased and vortex break-
down zones appear in the flow. Then, the flow and reaction-zone behavior are much more
nonlinear and cannot be predicted by the present asymptotic approach.

Figure 7 illustrates the effect of x0/Re on the scaled reaction-zone length according to the
asymptotic analysis. We can see that as the flow perturbation increases with the decrease of
x0/Re, the reaction-zone length is decreased. Note, however, that the present analysis is lim-
ited to small values of x0/Re and when this parameter increases above 1/200 the asymptotic
results are no longer accurate.

Figure 8 shows a comparison between the asymptotic and computational results for the
over- and under-ventilated reaction-zone shapes at x0/Re = 1/800 and various near-critical
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Figure 7. The effect of x0/Re on scaled reaction-zone length according to the asymptotic solutions: (a) over-venti-
lated with x0/Pe=5/40, (b) under-ventilated with x0/Pe=5/20.

Figure 8. Comparison of reaction-zone shapes from asymptotic results (−) and numerical calculations (♦) at
x0/Re=1/800 (Re=4000, x0 =5) and Pe=20.

swirl levels. The predicted shape of the reaction-zone according to the asymptotic solution is
close to that computed by the numerical simulation for swirl range below critical.

Figure 9 is a computational exploration of the influence of increase in swirl on streamline
patterns and reaction-zone shapes for both under- and over-ventilated cases. Representative
results are presented for x0 = 5, Re = 4000 and Pe = 20. Computations show that the nearly
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Figure 9. Streamlines pattern and flame shape from numerical results for several swirl ratios at x0/Re = 1/800
(Re=4000, x0 =5) and Pe=20.

columnar flow is significantly disturbed as swirl is increased. A vortex breakdown (reversed
flow) zone near the pipe centerline appears when the swirl ratio is above the limit level, at ω=
0·82. The breakdown zone moves upstream as swirl is increased further. Before breakdown,
reaction-zone length decreases with increase in swirl for both over- and under-ventilated
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cases. As the breakdown zone appears and increases in size, the over-ventilated reaction zone
becomes axially shorter and compact, while expanding radially. On the other hand, the under-
ventilated reaction zone becomes longer and narrower.

These changes in the reaction zone shape are directly related to changes in the flow pattern
as the incoming swirl ratio is increased. Deceleration of the axial flow and the development
of an outward radial flow near the centerline influence the size of the over-ventilated reaction
zone and cause it to become shorter and expand radially as swirl is increased. This effect is
even more pronounced when vortex breakdown zones appear. On the other hand, the devel-
opment of an outward radial flow near the wall influences the size of the under-ventilated
reaction zone and makes it shorter as swirl is increased toward the limit level. When vortex
breakdown zones appear, the accelerated flow near the wall causes an increase in the under-
ventilated reaction-zone length.

5. Conclusions

The effect of near-critical swirling flow on the structure of the classical Burke-Schumann
reaction sheet is investigated by asymptotic analysis and numerical computation. It is found
that in high-Reynolds-number flows the swirl-induced change from the columnar state can
be described by a nonlinear reduced-order model, as in the work of Wang and Rusak [19].
These flow changes are used to calculate the corrections due to swirl to the classical diffusion-
reaction structure according to the Burke-Schumann solution. The resulting corrections apply
to both lean and rich conditions of reaction. The asymptotic results show good agreement
with numerical simulations, specifically as the Reynolds number is increased and ω<ωc1. the
numerical results extend the investigation into regions where the asymptotic analysis is not
valid.

It is found that as swirl is increased towards the critical level, the flow decelerates near
the chamber centerline, accelerates near the chamber wall, and a field of outward radial speed
develops. For sufficiently high levels of swirl a large separation zone (near stagnation break-
down) appears around the centerline, the leading point of which shifts toward the pipe inlet as
swirl is further increased. As a result, in the case of lean reaction, the reaction-sheet shortens
in length, expands laterally, and becomes more compact. On the other hand, the flow changes
near the wall as swirl is increased result in nonlinear changes in the length of the rich reac-
tion sheet. When the swirl is below the limit level the reaction zone becomes shorter, but as
breakdown appears the rich reaction zone becomes narrower but longer. This work extends
the Burke-Schumann reaction-sheet theory to include the effect of swirl.
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